Decadal Survey Tier 2 Mission Study
Summative Progress Report

Geo-CAPE
Instrument Design Lab Study
Coastal Ecosystem Dynamics Imager (CEDI)

Antonio Mannino
November 15, 2010
Optics

✧ CEDI design is a modification of the previous IDL design of the MDI instrument in 2006 (250m spatial resolution).

✧ Assuming threshold 375m spatial resolution per pixel which allowed implementation of a 0.5 m Primary and shrinking of optical layout reducing the volume.

✧ Telescope focal length set for 1:1 Offner Spectrograph designs

✧ Effective focal length = 1717.728 mm, F/3.44 focal ratio

✧ UV-VIS-NIR split into 2 bands

✧ 345 nm to 600 nm

✧ 600 nm to 900 nm (up to 1100 nm achievable but QE of detector is very low at >1 micron)

✧ SWIR band - 1225 to 2160 nm

✧ All detectors have 18 µm pixels
Volume Comparison of MDI and CEDI

Geo-MDI
15.3 cubic meters
(includes calibration assy. Volume)

Multi-Disciplinary Imager (MDI)
IDL Fall 2006

Geo-CEDI
7.5 cubic meters
(includes calibration assembly volume)

Coastal Ecosystem Dynamics Imager (CEDI)
IDL January 2010

Note: dimensions in millimeters
Summary of Geo-CEDI

Instrument Concept
- Enables scientific objectives of coastal ocean and atmospheric retrievals.
- Capable of pointing anywhere on Full Disk.
- Spatial Resolution: 375 m x 375 m (nadir)
- Employs three focal planes
 - (1) 345-600 nm, (2) 600-1100 nm
 - Two Teledyne custom HyViSi ROIC: 1k (spectral) x 2k (spatial) detectors (UV-A or NIR coating)
 - (3) 1225-2160 nm
 - One HgCdTe Hawaii-2RG ROIC: 2k x 2k detector (SWIR)
- Spectral Resol: 0.5 nm (UV-NIR) and 2.5 nm (SWIR)

Instrument Characteristics
- Volume - 7.5 m3
- Mass - 621.4 kg
- Power - 392 W
- Data Rate - 88.4 Mbps
- Scene: 750 km N-S x variable E-W
- Scene Integration Time: 10-17 min
- Pointing - ~0.5 arc-sec
- Lifetime - 3 yr (design); 5 yr (goal)

Technology Development Needs
- Scan Mirror mechanism is on the edge of what is achievable. Further studies are necessary
- Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- 100Hz Attitude Determination may exceed existing proven technologies (133MHz BAE Rad750).
CEDI Scanning Plan

• U.S. Coastal Waters
 • East Coast – 4 scenes (3x / day minimum)
 • Gulf Coast – 4 scenes (3x / day minimum)
 • West Coast – 3 scenes (3x / day minimum)
 • Puerto Rico – 1 scene (1 to 3x / day)
 • Great Lakes – 4 scenes (1 to 3x / day)

• Regions of Interest
 • North, Central and South America
 • Anywhere within Field of Regard (50N / 45S Lat; ~160W / ~35 W Long)

• >72 scenes per day (~750x375 km at nadir)
 • Approximately 18 hours of operation per day
 • Approximately 4 scenes per hour (15 minutes)
 • 1024 iFOV scans per scene
Conclusions

- Geo-CAPE Oceans STM requirements are achievable with CEDI or similar class of instrument.
- Scan mirror mechanism is at the edge of what is achievable.
 - Further design study is required.
 - Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- Additional design studies recommended
 - To reduce instrument size and cost
 - To extend design to meet goal requirements for temporal and spatial resolution

2010 IIP Proposed Instrument Concepts
- Ball: multi-slit Offner spectrometer
- APL/GSFC: CEDI pointing stabilization system
- others?
EXTRA SLIDES
Radiometry Requirements & Results

70° SZA case

<table>
<thead>
<tr>
<th>λ_0 Bands</th>
<th>FWHM</th>
<th>W/m^2</th>
<th>Reg'd</th>
<th>Well_Capacity</th>
<th>Averages</th>
<th>Ltyp</th>
<th>Lmax</th>
<th>eff</th>
<th>Reg'd</th>
<th>Ltyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>nm</td>
<td>$\Delta\lambda$ - nm</td>
<td>Ltyp</td>
<td>Lmax</td>
<td>Dynamic Range</td>
<td>Dynamic Range</td>
<td>$\Delta\lambda$</td>
<td>Well_Volume</td>
<td>Well_Volume</td>
<td>Opt. Tx</td>
<td>Det. QE</td>
</tr>
<tr>
<td>350</td>
<td>15</td>
<td>39.26</td>
<td>117.5</td>
<td>2.99</td>
<td>21.49</td>
<td>60.00</td>
<td>46,538</td>
<td>139,247</td>
<td>0.24</td>
<td>0.65</td>
</tr>
<tr>
<td>360</td>
<td>15</td>
<td>38.00</td>
<td>124.1</td>
<td>3.27</td>
<td>16.71</td>
<td>60.00</td>
<td>59,840</td>
<td>195,393</td>
<td>0.31</td>
<td>0.65</td>
</tr>
<tr>
<td>385</td>
<td>10</td>
<td>32.16</td>
<td>125.7</td>
<td>3.91</td>
<td>17.65</td>
<td>40.00</td>
<td>56,656</td>
<td>221,513</td>
<td>0.31</td>
<td>0.68</td>
</tr>
<tr>
<td>412</td>
<td>10</td>
<td>41.77</td>
<td>198.7</td>
<td>4.76</td>
<td>8.65</td>
<td>40.00</td>
<td>115,662</td>
<td>550,095</td>
<td>0.43</td>
<td>0.72</td>
</tr>
<tr>
<td>425</td>
<td>10</td>
<td>40.63</td>
<td>193.1</td>
<td>4.75</td>
<td>8.70</td>
<td>40.00</td>
<td>114,935</td>
<td>546,085</td>
<td>0.42</td>
<td>0.73</td>
</tr>
<tr>
<td>443</td>
<td>10</td>
<td>37.51</td>
<td>219.1</td>
<td>5.84</td>
<td>9.61</td>
<td>40.00</td>
<td>104,106</td>
<td>608,151</td>
<td>0.39</td>
<td>0.74</td>
</tr>
<tr>
<td>460</td>
<td>10</td>
<td>33.14</td>
<td>238.9</td>
<td>7.21</td>
<td>10.60</td>
<td>40.00</td>
<td>94,319</td>
<td>679,962</td>
<td>0.38</td>
<td>0.75</td>
</tr>
<tr>
<td>475</td>
<td>10</td>
<td>30.25</td>
<td>238.3</td>
<td>7.88</td>
<td>10.96</td>
<td>40.00</td>
<td>91,250</td>
<td>718,621</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>490</td>
<td>10</td>
<td>29.25</td>
<td>226.4</td>
<td>7.74</td>
<td>10.45</td>
<td>40.00</td>
<td>95,476</td>
<td>740,472</td>
<td>0.41</td>
<td>0.75</td>
</tr>
<tr>
<td>510</td>
<td>10</td>
<td>24.23</td>
<td>218.8</td>
<td>9.03</td>
<td>13.08</td>
<td>40.00</td>
<td>76,441</td>
<td>690,354</td>
<td>0.38</td>
<td>0.75</td>
</tr>
<tr>
<td>532</td>
<td>10</td>
<td>20.09</td>
<td>214.8</td>
<td>10.69</td>
<td>15.96</td>
<td>40.00</td>
<td>62,645</td>
<td>669,884</td>
<td>0.36</td>
<td>0.75</td>
</tr>
<tr>
<td>555</td>
<td>10</td>
<td>16.11</td>
<td>212.2</td>
<td>13.17</td>
<td>18.57</td>
<td>40.00</td>
<td>53,862</td>
<td>709,431</td>
<td>0.37</td>
<td>0.75</td>
</tr>
<tr>
<td>583</td>
<td>10</td>
<td>14.56</td>
<td>205.9</td>
<td>14.14</td>
<td>22.22</td>
<td>40.00</td>
<td>45,007</td>
<td>636,418</td>
<td>0.33</td>
<td>0.74</td>
</tr>
<tr>
<td>617</td>
<td>10</td>
<td>11.25</td>
<td>192.1</td>
<td>17.07</td>
<td>22.34</td>
<td>40.00</td>
<td>44,758</td>
<td>764,026</td>
<td>0.33</td>
<td>0.90</td>
</tr>
<tr>
<td>640</td>
<td>10</td>
<td>9.39</td>
<td>186.1</td>
<td>19.82</td>
<td>25.53</td>
<td>40.00</td>
<td>39,177</td>
<td>776,529</td>
<td>0.33</td>
<td>0.91</td>
</tr>
<tr>
<td>655</td>
<td>10</td>
<td>8.33</td>
<td>176.6</td>
<td>21.20</td>
<td>26.51</td>
<td>40.00</td>
<td>37,718</td>
<td>799,554</td>
<td>0.35</td>
<td>0.91</td>
</tr>
<tr>
<td>665</td>
<td>10</td>
<td>7.83</td>
<td>176.9</td>
<td>22.59</td>
<td>25.58</td>
<td>40.00</td>
<td>39,087</td>
<td>882,988</td>
<td>0.38</td>
<td>0.91</td>
</tr>
<tr>
<td>678</td>
<td>10</td>
<td>7.37</td>
<td>171.3</td>
<td>23.24</td>
<td>26.66</td>
<td>40.00</td>
<td>37,510</td>
<td>871,697</td>
<td>0.38</td>
<td>0.91</td>
</tr>
<tr>
<td>710</td>
<td>15</td>
<td>5.36</td>
<td>161.4</td>
<td>30.10</td>
<td>35.39</td>
<td>60.00</td>
<td>28,256</td>
<td>850,622</td>
<td>0.38</td>
<td>0.90</td>
</tr>
<tr>
<td>748</td>
<td>10</td>
<td>4.89</td>
<td>147.5</td>
<td>30.17</td>
<td>36.82</td>
<td>40.00</td>
<td>27,156</td>
<td>819,179</td>
<td>0.38</td>
<td>0.91</td>
</tr>
<tr>
<td>765</td>
<td>40</td>
<td>3.62</td>
<td>141.9</td>
<td>39.18</td>
<td>51.32</td>
<td>160.00</td>
<td>19,486</td>
<td>763,516</td>
<td>0.36</td>
<td>0.91</td>
</tr>
<tr>
<td>820</td>
<td>15</td>
<td>2.82</td>
<td>129.7</td>
<td>46.04</td>
<td>62.24</td>
<td>60.00</td>
<td>16,067</td>
<td>739,677</td>
<td>0.36</td>
<td>0.89</td>
</tr>
<tr>
<td>865</td>
<td>40</td>
<td>4.50</td>
<td>139.0</td>
<td>30.89</td>
<td>37.36</td>
<td>160.00</td>
<td>26,770</td>
<td>826,886</td>
<td>0.36</td>
<td>0.88</td>
</tr>
<tr>
<td>1245</td>
<td>20</td>
<td>0.88</td>
<td>59.5</td>
<td>67.61</td>
<td>67.72</td>
<td>368.00</td>
<td>1,477</td>
<td>99,843</td>
<td>0.336</td>
<td>0.85</td>
</tr>
<tr>
<td>1640</td>
<td>40</td>
<td>0.29</td>
<td>17.6</td>
<td>60.69</td>
<td>156.00</td>
<td>736.00</td>
<td>641</td>
<td>38,903</td>
<td>0.336</td>
<td>0.85</td>
</tr>
<tr>
<td>2135</td>
<td>50</td>
<td>0.08</td>
<td>4.7</td>
<td>58.75</td>
<td>424.41</td>
<td>920.00</td>
<td>236</td>
<td>13,843</td>
<td>0.336</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Challenge to overcome ocean requirements of high sensitivity (SNR) without saturating the detectors.
Ltyp = ~TOA Radiances at 70° SZA*

Total integration time = ~17.1 min per scene
0.8 sec integration time per scan line
Co-add 2 frames for UV-VIS-NIR & 46 for SWIR
Ltyp & Lmax equivalent to SeaWiFS values

Total integration time = ~10.3 min per scene
0.4 sec integration per scan line
Co-add 3 frames for UV-VIS-NIR & 23 for SWIR
Saturation of 1245 and 1640nm bands possible for extremely bright scenes.
Lmax(Barnes) based on SeaWiFS data, only 0.2% of pixels saturated
Aperture & Calibration Covers Opened

2-Sided Diffuser plate

Solar Calibration View

Lunar Calibration & Nadir Science Views

Scan mirror mechanism